Einführung in die Kontinuumsmechanik (Introduction into Continuum Mechanics)

  • type: lecture / exercises
  • semester: summer semester
  • sws: 2
  • ects: 2
  • lv-no.: 6200607 / 6200421 from Summer Sem. 2020
  • exam:

    written

Syllabus:

  • vectors, tensors, index notation
  • stress and equilibrium
  • displacement and strain
  • linear elastic material law
  • boundary value problems of elasticity theory
  • plane problems
  • Airy's stress function
  • local stress concentrations
  • work and energy principles of elasticity theory
  • approximate solution methods


Aims: The lecture familiarizes with the continuum mechanical concepts (equilibrium, stress, strain, material law) needed to analyze the loading and deformation of elastic structures. Analytical and numerical solution techniques are discussed as well as the interpretation of particular solutions with regard to practical problems in civil engineering.

Exam: written exam, 60 min.

Prerequisite: Strength of Materials, Mathematics

Literature:

  • Gross, D., Hauger, W., Wriggers, P.: Technische Mechanik 4. Springer, 2007
  • Fung, Y.C.: A First Course in Continuum Mechanics. Prentice Hall, 1965
  • Lai, M., Krempl, E., Rubin, D.: Introduction to Continuum Mechanics. Elsevier, 2010
  • Reddy, J.N.: An Introduction to Continuum Mechanics - with Applications. Cambridge, 2008
  • Prager, W.: Einführung in die Kontinuumsmechanik. Birkhäuser, 1961
  • Becker, W., Gross, D.: Mechanik elastischer Körper und Strukturen. Springer, 2002
  • Seelig, Th.: Einführung in die Kontinuumsmechanik. Skript zur Vorlesung
  • Chou, P.C., Pagano, N.J.: Elasticity. Van Nostrand, 1967