Bild Marlon Franke Marlon Franke, KIT

Dr.-Ing. Marlon Franke

  • Institute of Mechanics
    Karlsruhe Institute of Technology (KIT)

    Geb. 10.30
    Otto-Ammann-Platz 9
    D-76131 Karlsruhe 

Teaching

winter term 2023/24
- Statik starrer Körper (more ...)
- Kontinuumsmechanik (more ...)

summer term 2023
- Einführung in die Kontinuumsmechanik (more ...)
- Kontaktmechanik (more ...)

Supervised theses (KIT)

Pit Reiff: Design of a novel Petrov-Galerkin finite element formulation for the simulation of plate structures, Master thesis, 2023

Felix Zähringer: Design of an energy and momentum consistent time integration scheme based on a polyconvex inspired mixed thermo-electro-mechanic framework, Master thesis, 2021 (Winner DYNAmore Award 2021)

Beatrice Hummel: Finite-Elemente-Methode für die Dynamik linear-viskoelastischer Polymere am Besipiel eines Dehnstabs, Bachelor thesis, 2021

Anna Fischer: Untersuchung von Hourglass-Stabilisierungstechniken im Rahmen der Finite-Elemente-Methode, Master thesis, 2019

Robin Pfefferkorn: Erweiterung der Enhanced Assumed Strain Methode basierend auf der Struktur polykonvexer Verzerrungsenergiefunktionen für große Deformationen, Master thesis, 2018 (Winner DYNAmore Award 2018)

Philipp Kinon: Theorie und Numerik transversal isotropen Materials für elektromechanisch gekoppelte Probleme mit großen Deformationen Bachelor thesis, 2017

Moritz Hille: Numerische Simulation inkompressiblen Materialverhaltens, Bachelor thesis, 2016

Robin Pfefferkorn: Thermomechanisch gekoppeltes Phasenfeldmodell zur Rissausbreitung, Bachelor thesis, 2015 (Nominated for the Bilfinger SE Award 2015)

Friedemann Streich, Analyse von Phasenfeldmodellen zur Rissausbreitung, Master thesis, 2015

Mark Schiebl, Integration thermoelastisch gekoppelter diskreter Systeme, Master thesis, 2015 (Awarded the 2015 University Prize of the City of Karlsruhe)

Research interests

Computational mechanics, in particular
  - consistent time discretization
  - spatial discretization (finite element method)
  - coupled systems (inclusion of the electric and/or thermal field, as well as the phase field)
  - material laws (analytical and based on neural networks)
  - computational contact mechanics
associated GitHub repository (if you want to contribute, please contact us): https://github.com/kit-ifm/moofeKIT

 

Selected publications

M. Franke, D. Klein, O. Weeger and P. Betsch
Advanced discretization techniques for hyperelastic physics-augmented neural networks. Comput. Methods Appl. Mech. Engrg., accepted, preprint https://arxiv.org/abs/2306.09866, 2023.

M. Franke, F. Zähringer, M. Hille, R. Pfefferkorn, V. Valdes y Beck, P.L. Kinon and P. Reiff 
MoofeKIT: Matlab object-oriented finite element KIT, Version v1.0.1., Zenodo, https://doi.org/10.5281/zenodo.8266569, 2023.

M. Franke, F. Zähringer, M. Hille, R. Ortigosa, P. Betsch and A.J. Gil 
A novel mixed and energy-momentum consistent framework for coupled nonlinear thermo-electro-elastodynamics, Int. J. Numer. Methods Eng., 124:2135-2170, 2023.

M. Franke, R. Ortigosa, J. Martínez-Frutos and A.J. Gil and P. Betsch 
A thermodynamically consistent time integration scheme for non-linear thermo-electro-mechanics, Comput. Methods Appl. Mech. Engrg., 389:114298, 2022.

R. Ortigosa, A.J. Gil, J. Martínez-Frutos, M. Franke and J. Bonet 
A new energy–momentum time integration scheme for non-linear thermo-mechanics, Comput. Methods Appl. Mech. Engrg., 372:113395, 2020.

A. Janz, P. Betsch and M. Franke
Structure-preserving space-time discretization of a mixed formulation for quasi-incompressible large strain elasticity in principal stretches, Int. J. Numer. Methods Eng.,120:1381-1410, 2019

M. Franke, R. Ortigosa, A. Janz, A.J. Gil and P. Betsch
A mixed variational framework for the design of energy-momentum integration schemes based on convex multivariable electro-elastodynamics, Comput. Methods Appl. Mech. Engrg., 351:109-152, 2019.

R. Ortigosa, M. Franke, A. Janz, A.J. Gil and P. Betsch
An energy-momentum time integration scheme based on a convex multi-variable framework for non-linear electro-elastodynamics, Comput. Methods Appl. Mech. Engrg., 339:1-35, 2018.

M. Franke, A. Janz, M. Schiebl and P. Betsch
An energy-momentum consistent integration scheme using a polyconvexity-based framework for nonlinear thermo-elastodynamics, Int. J. Numer. Methods Eng., 115:549-577, 2018.

C. Hesch, A.J. Gil, R. Ortigosa, M. Dittmann, C. Bilgen,P. Betsch, M. Franke, A. Janz and K. Weinberg 
A framework for polyconvex large strain phase-field methods to fracture, Comput. Methods Appl. Mech. Engrg., 317:649-683, 2017.

C. Hesch, S. Schuß, M. Dittmann, M. Franke and K. Weinberg 
Isogeometric analysis and hierarchical refinement for higher-order phase-field models, Comput. Methods Appl. Mech. Engrg., 303:185-207, 2016.

C. Hesch, M. Franke, M. Dittmann and İ. Temizer 
Hierarchical NURBS and a higher-order phase-field approach to fracture for finite-deformation contact problems, Comput. Methods Appl. Mech. Engrg., 301:242-258, 2016.

P. Betsch, C. Becker, M. Franke, Y. Yang and A. Janz 
A Comparison of DAE Integrators in the Context of Benchmark Problems for Flexible Multibody Dynamics, Journal of Mechanical Science and Technology, 29 (7) (2015) 2653-2661.

M. Dittmann, M. Franke, İ. Temizer and C. Hesch 
Isogeometric analysis and thermomechanical Mortar contact problems, Comput. Methods Appl. Mech. Engrg., 274:192-212, 2014.

M. Franke, C. Hesch and P. Betsch 
An augmentation technique for large deformation frictional contact problems, Int. J. Numer. Methods Eng., 94:513–534, 2013.

Curriculum Vitae

since 2023    Akademischer Oberrat, Institute of Mechanics, KIT
2017 - 2023 Akademischer Rat, Institute of Mechanics, KIT
2014 PhD (Dr.-Ing.), Institute of Mechanics, KIT
2013 - 2017 Academic Staff Member, Institute of Mechanics, KIT
2009 - 2013 Research Assistant, Chair of Computational Mechanics, University of Siegen, Germany
2004 - 2009 Study of Mechanical Engineering, Degree Dipl.-Ing., University of Siegen